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A REPRESENTATION FORMULA FOR THE SOLUTIONS
OF THE SECOND ORDER LINEAR DIFFERENTIAL EQUATION

E. J. Pellicciaro, University of Delaware

Let p and q be continuous functions on a bounded
closed interval I containing X, It is the purpose of
this paper to give a simple existence and uniqueness proof

for the initial value problem
B ¥y =py' =y =0, y&x) =y, v(x) =7y]

Yo and yé arbitrary numbers. A product of the proof is a
representation formula for the solution of (1). That the
representation formula is indeed a solution under the hypo-

thesis stated can be verified by direct substitution into (1).

A function P om I is a solutionm of (1) only if o/

“and fP* exist on I and

B (x) - PGP - AXP() = 0,  x €I

From this then,
X x
DB ‘(x)exp(-[ p(V)dv) = q(x)P(x)exp(=[ p(v)dv),
%o *o
so that, since { is continuous on I,

X X - S
praexp(-[ pVaV) = yg+ [ a(e)d(s)exp(-[ p(v)dv)ds.
o o : o
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Thus, upon setting

b9
E(x) = exp jx p(V)dv
(o]

and E"Y(x) = 1/E(x), one has

(2) 0:(0) = Bl + | B H@)ale)pe)dsl,
0

which implies

x x t -1
(3) mu>5%+ygxmna+jx&Eum (8)q(s)P(s)dsdt
o o O

for x ¢ 1. Conversély now, suppose { is continuous on i
with (3) holding for x € I. Then it follows from (3) that

P’ exists and in fact that fp’ is givem on I Dby (2).
Whence, from (2), @ exists and, by simple inspection,

p” = pp* + qp; moreover, from (3), ﬂ(xo) = Yo and from
(2), ﬂ’(xo) = yé. Thus, f is a solution of (1), completing

the proof of the following.

Theorem 1. A continuous function § omn I is a solution

of (1) if and only if (3) holds for x ¢ I.

Thus the problem of solving (1) is equivalently replaced
by the problem of finding a function f continuous on I for
which (3) holds for x € I. The form of (3), an integral
equation, is considerably simplified with the introduction of

the operator S defined for continuous functions £ om I by

’ X »C _ 1
SE(x) = fx jx E(t)E~*(8)q(s) £(s)dsdt, x ¢ I.
o O
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Indeed, (3) is a special case of P(x) = £(x) + SP(x), x¢€1I,

or equivalently,
(4) p = £+ sp,

where £ 1is restricted to the set of continuous functions on
I. The operator S, and therefore the corresponding integral
in (3), plays a singularly important role in generating a

function § satisfying (4), hence in solving (1).

Note that Sf is a continuous functiom on 1 if £ is,
in which case so is SSf. With this in mind, operators Sn,'
iterants of S, are defined inductively for continuous

functions £ on I in the following way. Set .

s°f = £, sl = s£,
and then
s = ss™lg, aa=1,2,... .

Pertinent properties of S" are given below in the form of
three lemmas. As their proofs are straightforward, they are

omitted.

n

Lemma 1. 'S~ is a linear operator. That is, if

fl”"’ fk are continuous functions on I, then
© ofly n ' n

for any set Ciseeey Cp of numbers.
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Lemma 2. Let £ be continuous on I, hence bounded on
I by say M. Then S™f 4is continuous on I; moreover,
there exists K such that lsnf(x)] < MK"/n' for n =0, 1,
2,... and x ¢ I.

Lemma 3. If £ is continuous on I, then the series

(.34
E:Snf converges uniformly to a continuous functiom on 1I.
n=0

Having disposed of the preliminaries, the main theorem

concerning (4) follows.

Theorem 2. Let £ be continuous on I. Then there

exists one and only one continuous function § on I such

L
that p = £ + SP; indeed, { = anf.',
n=0

Proof. Define

aﬁd then

P, = £+ 5P _q» n=1,2,... .
In view of lemma 1,

e ok
p_ = s £,
" &
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But the sequence {ﬂn} is the sequencé of partial sums

oY
defining the series Ejsnf, which by lemma 3 converges
n=0

uniformly to a continuous function § om I. That
[2.2]
P = ZSnf
n=0
satisfies (4) follows from

a o0
£+ Sp=£+5 anf
' n=0

- £ + Zs““f
n=0
= S°f + isnf = P,
n=1

the second equality holding because of the uniform convergence

on I of Z?nf. To show that it is the only such continuous

function, suppose there are two, say f and ¥. Then
p-Y=5(-1Y.
But this implies by induction that

p-Y=8%p - v, n=1, 2,...
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This in turn implies by lemma 2 that, for some M and K,

b - Y| <M, n=0,1,2,... and xel

Hence, for x ¢ I,

o) - Y@l < lim .Vg.f.ﬁ = 0,
n-)oo

implying 0 = Y.

Corollary. ‘A function f is a solution of (1) if and
only if

(5) P(x) = sfsn(yo + yé jx E(x)dr), x e 1.
n=0 %o '

A pair of linearly independent solutions of (1) obtained

from (5) is the pair
x) " [ le(epe?
y.(x) = 1+ | E(t.)E “(s,)q(s,)ds,dt
1 fxojx 1 1 1 1771
x L\C Sy L .
2 -1 2071 -1
+ E(ty))E ~(s s E(t,)E ~(s 8,)ds.dt.ds,dt
[ [ ECDET (satsy) [ “f "ECeET () a(s;)ds e dsydt,
o "o o “o
+ ..."

X x .t - S
yz(x) = fon(r)dr + yxofsz(tl)E 1(sl)q(sl)szE(r)drdsldt1

x t2 -1 32 t -1, S
+ fxofon&z)E (82)Q(82)JxojxiE(t1)E (sl)q(sl)szE(r)drdsldtldszdcz

+~‘.‘
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It is not at all difficult to compute ’/ directly from
(5), formally or by reference to convergence theorems, to
obtain (2) and then to conclude as in the last part of the
proof of theorem 1 that @ as given by (5) is a solution of

1, by direct verification.
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